
Create Functions
with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Python IDLE
• Spyder (Anaconda distribution)
• PyCharm
• Visual Studio Code
• Visual Studio
• Jupyter Notebook
• …

Python Editors

Spyder (Anaconda distribution)

Code Editor window

Console window

Variable Explorer window

Run Program button

https://www.anaconda.com

https://www.anaconda.com/

• We use the basic IDLE editor or another Python
Editor like Spyder (included with Anaconda
distribution) or Visual Studio Code, etc.

Basic Python Program

print("Hello World!")

Variables in Python
> x = 3
> x
3

Creating variables: We can use variables in a calculation like this:
> x = 3
> y = 3*x
> print(y)

We can implement the formula
𝑦(𝑥) = 𝑎𝑥 + 𝑏 like this:

> a = 2
> b = 4

> x = 3
> y = a*x + b
> print(y)

𝑦(𝑥) = 2𝑥 + 4

A variable can have a short name (like x and y) or a more descriptive name (sum, amount, etc).
You don need to define the variables before you use them (like you need to to in, e.g., C/C++/C).

Calculations in Python

> a = 2
> b = 4

> x = 3
> y = a*x + b
> print(y)

> x = 5
> y = a*x + b
> print(y)

We can use variables in a calculation like this:
𝑦(𝑥) = 2𝑥 + 4

𝑦(3) = ?

𝑦(5) = ?

𝑦(𝑥) = 𝑎𝑥 + 𝑏

Create Functions
• So far, we have used many of the built-in functions in

Python, like print(), plot(), len(), etc.
• There are many built-in functions in Python
• We can also use functions which are part of many of

the additional Python Libraries like NumPy,
Matplotlib, etc.

• Still, very often we need to make our own functions
from scratch

Function Definition

def FunctionName:
<statement-1>
.
.
<statement-N>
return ...

Note! Python uses
indentation (spaces)

Other Programming
Languages uses curly
brackets {} or Begin .. End

Note that you need to use a colon ":" at the
end of line where you define the function.

The return value should be stated here

The Name of the function

Function Example

def add(x,y):
z = x + y
return z

The Return value

The Name of the Function
Input Arguments (information that
are passed into a function)

Create Functions
def add(x,y):

return x + y

Create the Function:

def add(x,y):

return x + y

Using the Function:
x = 2
y = 5

z = add(x,y)

print(z)

Using the Function within the same script:

Create Functions in a Separate File
• Although you can mix functions and code in one file, it is much

better to create the functions in separate .py files
• In that way you can easily reuse the function in different Python

scripts

We start by creating a separate
Python File, e.g., “myfunctions.py“ for
the function:

def average(x,y):

return (x + y)/2

myfunctions.py:

Next, we create a new Python File (e.g., testaverage.py)
where we use the function we created:1

2

from myfunctions import average

a = 2
b = 3

c = average(a,b)

print(c)

Multiple Return Values
def stat(x):

totalsum = 0

#Find the Sum of all the numbers
for x in data:
totalsum = totalsum + x

#Find the Mean or Average of all the numbers
N = len(data)
mean = totalsum/N
return totalsum, mean

Using the function
data = [1, 5, 6, 3, 12, 3]

totalsum, mean = stat(data)
print(totalsum, mean)

Functions with multiple
return values:
Typically we want to return
more than one value from a
functionCreate

Function

Use
Function

In general, it is recommended to
create the function(s) in separate
File(s) as shown in the previous
example

Creating Python Modules
• As your program gets longer, you may want to split it

into several files for easier maintenance. You may also
want to use a handy function that you have written in
several programs without copying its definition into
each program.

• To support this, Python has a way to put definitions in a
file and use them in a script or in an interactive
instance of the interpreter (the Python Console
window).

Creating Python Modules
Example:
We want to create a Python Module that has functions for converting from
Celsius to Fahrenheit and from Fahrenheit to Celsius

𝑇+ = 𝑇, − 32 ×(5/9)

𝑇, = 𝑇+×9/5 + 32

Necessary Formulas to implement in the Python code:

Example cont.

def c2f(Tc):

Tf = (Tc * 9/5) + 32
return Tf

def f2c(Tf):

Tc = (Tf - 32)*(5/9)
return Tc

First, we create a Python module with
the following functions (“fahrenheit.py“):

Then, we create a Python script for testing
the functions (e.g., “testfahrenheit.py“):

from fahrenheit import c2f, f2c

Tc = 0
Tf = c2f(Tc)
print("Fahrenheit: " + str(Tf))

Tf = 32
Tc = f2c(Tf)
print("Celsius: " + str(Tc))

1
2

Example cont.
from fahrenheit import c2f, f2c

Tc = 0
Tf = c2f(Tc)
print("Fahrenheit: " + str(Tf))

Tf = 32
Tc = f2c(Tf)
print("Celsius: " + str(Tc))

from fahrenheit import *

Tc = 0
Tf = c2f(Tc)
print("Fahrenheit: " + str(Tf))

Tf = 32
Tc = f2c(Tf)
print("Celsius: " + str(Tc))

import fahrenheit as fa

Tc = 0
Tf = fa.c2f(Tc)
print("Fahrenheit: " + str(Tf))

Tf = 32
Tc = fa.f2c(Tf)
print("Celsius: " + str(Tc))

Different options: Basically, we use the Module we have created just
like an external Python Library like NumPy, etc.

Creating Python Modules
• For larger Python applications you should definitely

divide your code into different Python Modules
• The Python Modules should be divided into different

topics, like one Module for, e.g., Statistics, one for
Complex Numbers, …

• In that way the structure of your application becomes
much better

• And you can reuse the Modules in other applications
• You only need to change the code one place
• It is easier to find Bugs
• etc.

Advanced
Functions

Hans-Petter Halvorsen

https://www.halvorsen.blog

Arbitrary Arguments, *args

Create/Define the Function:
def cars(*car):

n = len(car) #Find Number of cars
return n

Using the Function:
n = cars("Ford", "Toyota", "Tesla")
print(n)

n = cars("Ford", "Tesla")
print(n)

n = cars("Ford", "Tesla", "Volvo", "Toyota", "VW")
print(n)

If you do not know how many arguments that will be passed into your function, add a * before
the parameter name in the function definition.

Example:

Arbitrary Arguments, *args
Create/Define the Function:
def cars(*car):

number = len(car) #Find Number of cars
carnames = ""
for x in car:

carnames = carnames + ", " + x

return number, carnames

Using the Function:
n, names = cars("Ford", "Toyota", "Tesla")
print(n, names)

n, names = cars("Ford", "Tesla")
print(n, names)

n, names = cars("Ford", "Tesla", "Volvo", "Toyota", "VW")
print(n, names)

Modified Example:

Key – Value Arguments

Create/Define the Function:
def cars(regno, cartype, carcolor):

carinfo = regno + " - " + cartype + " - " + carcolor
return carinfo

Using the Function:
info = cars(cartype="Ford", carcolor="Blue", regno="AR30675")
print(info)

info = cars(cartype="Toyota", carcolor="Green", regno="NE30675")
print(info)

Another option is to send arguments with the key = value syntax. See example below:

Note That the order of the arguments does not matter in this case

Key – Value Arguments

Create/Define the Function:
def cars(**cardata):

carinfo = ""

for x in cardata:
carinfo = carinfo + x + ": " + cardata[x] + ", "

return carinfo

Using the Function:
info = cars(cartype = "Ford", carcolor = "Blue", regno = "AR30675")
print(info)

info = cars(carcolor = "Green", cartype = "Toyota")
print(info)

info = cars(cartype = "Tesla", carmodel = "Model S", carcolor="Black")
print(info)

If you do not know how many Keyword arguments that will be passed into your function, add
two asterisk: ** before the parameter name in the function definition. See example below:

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

